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A parameter-dependent system of differential equations on a plane, ariging in
the problem of loss of stability of a periodic solution close to 1:4 resonance, is
analyzed, Its phase pattemn types are described in the cases when this system
is almost~ Hamiltonian,

1. Equations in polar coordimates It wasshown in[1]that
it is necessary to study the bifurcations of the phase pattem of the equation

5 =gz + Az|z|? + B3 (1.

where 2 = z - iy is a point in the complex planeand &, 4, B are complex
parameters, in order to describe the phenomena arising from the loss of stability of the
periodic solution. In the present paper we describe the phase pattern types of (1.1),
arising for small Re e and Re 4. The main questions here are connected with as-
certaining dispositions and the bifurcations of the limit cycles,

Let us describe briefly the connection between the stability loss problem and Eq,
{1.1). Suppose that in a parameter-dependent differential equation system there is,
for certain parameter values, a periodic solution all of whose multipliens lie in the
unit disk, Suppose that under a variation of the parameters the solution being examin-
ed loses stability in the following manner; a pair of complex-conjugate multipliers
intersect the unit circle, while the rest lie in the unit disk. At the instant of stability
loss and at instants close to this bifurcations necessarily take place in a neighborhood
of the periodic solution being examined: other periodic solutions and two-dimensional
invariant tori are generated and disappear. When the multipliers intersect the unit circle
not too close to the points ki, these bifurcations have been described in [1,2]. The
case of multipliers close to ki has not yet been studied fully. The motion in a
neighborhood of a periodic solution is studied by analyzing the normal form of the
differential equation system around this solution, If the multipliers are close to =i,
then when constructing the normal form we need to take into account the 1:4 resonance
between the motion with respect to the original periodic solution and the oscillations
of the solutions of the variational equatioms around it, Then in the main approximat-
ion Eq. (1.1) splits off into normal form, The parameter & in it describes the devia-
tion of the multiplier from point ¢ A periodic solution corresponds to the equili-
brium z = 0 , periodic solutions close to the original one but with a period approx-
imately four times larger correspond {o the other equilibria, and two-dimensional
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Bifurcations of the phase pattem of an equation system 897

invariant tori of the original equation system correspond to the limit cycles of (1. 1).
The bifurcations in a neighborhood of the periodic solution can be described by study-
ing the phase pattern of (1. 1).

The parameter B in(1.1) can be made real by rotating the phase plane (z, y).
We denote & = 0 + i1, A = —y —ia, B =g. Following[1], we intro-
duce symplectic polar coordinates p and ¢ and we rewrite the original Eq. (1.1)
as the system

p’ = —0H/3¢ + 2p (6 — 2vp), ¢ = dH/dp (1.2)
(=122, ¢=argz, H =1 —p*(a -+ P sin4g))

This system is invariant relative to a rotation of the phase plane through an angle n/2.
We assume that 7%~ 0, f 5= 0. Then, T and B can be made positive by revers-
ing the time direction and rotating the phase plane through an angle n/4. There-
fore, we take it that v >0, § > 0.

2, Phase pattern of the unperturbed problem (6=
v = 0). In what follows we examine the case of small 0 and ¥. Therefore,
at first we describe the problem’s phase plane fr ¢ = 9 = (. Forsuch ¢ and
7 system(1.2) takes the Hamiltonian form

p' = —dH/69, ¢ = 0H/dp (2.1)

Using the integral H = const it can be shown that the phase pattern of system
(2. 1) can be of the following three forms, depending upon the relation between para-
meters @ and f .

Fig. 1

A) @ > . The phase pattern is shown in Fig, 1la. The four saddies have the
coordinates p =p, = Ygv/(z + P), ¢o=a/8 4 an/2 (r=1,..,4);
at the saddles H = h, = Y/ a%/(a -+ B). The four centers have the coordinates
P =pc=Yst/(@ — B), p =3n/8 + nn/2 (n = 1,..., 4); at these centers

H = h, = Y,2%/(a — B). The origin too is a center, The separatrices form
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two like ellipses with mutually perpendicular major semiaxes. The separatrices divide
the plane into the regions Gy, G,, G§¥ (n =1,..., 4), filled with closed traj-
ectories. Any of the regions G{™ will be referred to as region  G,. The trajectory
equations are found from the relation H = h = const, where 0 Lh<h
inregion Gy, — co<{h < h, inregion G,, and h, < k< h, in regionG,.
In each of the regions the trajectory is uniquely determined by the value of .

B) B> a> —f (Fig. 1b). The saddles are located just as for type A. A
center is located only at the origin, Inregion @,, filled with closed trajectories,
0< LR, .

C) o< —p (Fig. 1c). All trajectories are closed and encircle the origin,
and on them % > 0.

3, Condition forthe generation of a limit cycle, The
limit cycles of a perturbed system (1. 2) with small ¢ and y must be sought close
to those trajectories of the unperturbed system (2. 1), along which the integral of the
perturbation equals zero, i.e.,

§2p(o-—2yp)d<p= 0 (3.1)

where L is a closed trajectory of (2. 1) and the function p (@) is taken along L
(see Chapter XIII in [3]). Therefore, to study the disposition of the limit cycles we
need to seek trajectories L satisfying condition (3. 1), viz., trajectories from which
Umit cycles are generated, Let L lein G, andlet H =4 on L, By G
(k) we denote the region bounded by L. By passing in(3,1), with the aid of the
Green's formula, from integration along L to integration over G™ (h) and by introd-
ucing, following [1], the function £, (h) , viz., the square of the radius of inertia
of region 3™ (h), we rewrite (3.1) as

knm (B) =w, w= Y0l (3.2)
I, (k)
km(B) =1, Dum(b) = dpdg
m Ily m Gm§h)
Iymb)=§ 2pdpde, m=1,2,3
a™R)

The behavior of the roots of these equations as a function of w is determined by the
behavior of functions  km (A) . The graphs of functions k., (k) (m = 1,2, 3)
for various values of parameters o and § are shown in Fig, 2, The following state-
ment describes the necessary properties of these functions,
Theorem L 1% Let the phase pattern of (2. 1) be of type A (@ > B). Then
the nature of the behavior of functions k., () is determined by the value of a/f.
A1), If a/p > E,, where E, is a constant defined below, g, = 4.1, then
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1) in their domains K, (k) and %, (k) increase monotonically and K (k)
decreases monotonically as % grows; k' (k) 7= 0 (m = 1, 2, 3, the prime de-
noted the derivative with respect to A);

2) k' (h)—> +oo a8 h~h, —0, ky' (h) > —00 as h—h, — 0, k'

(#) > +oco as h—h,+ 0; ky (B) >+ a8 h— —oo;

3) ki (he) < ky (b)) < by (h,).

A2, ¥ 1<alf <t,, then

1) kg (B) bas a nondegenerate minimum at some point kg :  ky'(hg) = 0,

ky" (hg) >0, ky' (B) =0 for A 3= hy;

2) &' (h)>+oo a8 hsh —0;

3) ky (k) > K (he);

4) in other respects the behavior of Xy, is the same as in case Al,

A%, If a/f = E,, then k' (k) tendsto a finite negative imitas 4 —
h, — 0;in other respects the behavior of &, is the same as in case AL

2°. Let the phase pattemn of (2, 1) be of type B (B > @ > —fB).  Then £k
behaves in the same way as in the pattern for type A,

3°. Let the phase pattem of (2.1) be of type C (& < —f). Then %' (k) >0
and % (B) > 400 3s h— Jo0.

In what follows we shall denote Wy, =k, () (m =1, 2, 3), w, =
ks (ho), wq = kg (hg). The cases a/f > E,, a/fp = E,, §, >a/f > 1,
1> a/f > ~1, and a/f < —1 will be called cases Al, A*, A2, Band C,
respectively.

In Theorem 1, §, = (3 4+ cos®,) /(1 — cos &,), where &, is the (obvious-
ly single) root of the equation tg% — 0 = n examined for & = (0, = / 2);
o, = 1.352, §, = 4.11.

Theorem 1 is proved in Sects, 6,1 —6,4,

4, Bifurcations of the limitcycles of the perturbed
system. Theorem 1 enablesus to describe the bifurcations of the roots of the
equation km (B) = w and, hence, the bifurcatious of the trajectories of the unper-
turbed problem (2, 1), generating the Umit cycles of (1. 2). The bifurcations are seen
from the graphs of Ay, () (Fig.2). The following statement describes the bifurca-
tions of the limit cycles of (1.2),
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Theorem 2, Forspecified o, B, 7, satisfying the inequalities ¥ % 0,
B0, Bo=|a|, a/Bs=t,, wecanfind 6 >0 suchthatwhen O0<<
ol +]vi<$
1) the bifurcations of the limit cycles of (1.2) are the same as the bifurcations
generating the cycles of the trajectories of (2. 1) for the same «, B, T;

2) the collection of values of parameter 1w, at which the bifurcations take place

in case A2, viz., {0, w,,w;’,wy, wy, w,’},satisfy the bounds | ws —w," | <
alol+|v]) (s=1,2,3,a,d), where ¢, >0 isindependent of ¢ and
Y. Similar assertions are valid for cases Al, B and C;

3) when w = w,; all cycles are nondegenerate.

In particular, in case A2 the bifurcations as w grows take place in the following
manner. Limit cycles donot exist when w <0, When w =0 alimitcycleis
generated at the origin, It expands as w grows and when w = w,’ it tums into separa-
trices, i.e., connects saddle singular points, Limit cycles do not exist when ;' <

w<wy ., A double limit cycle is generated in region G; when w=wy' ., Under
a further growth of w its constituent cycles diverge. When w = w,’ one of them
turns into separatrices and then disappears. The other cycle exists for alt w > wy’ and
goes off to infinity as w increases. Four symmetric cycles (loops of separatrices) are
generated when w = wy’. As w grows these cycles move away from the separatrices,
become smaller, and when w = wy’ they disappear into four foci located in region

Gs. Since the cycles are nondegenerate when w == wy' a change of stability of
this point takes place as the cycle branches off from the singular point, The bi-
furcations of the limit cycles are described analogously incase A1, B and C .
They were predicted in [1], The proof of Theorem 2 is based on Theorem 1 and is
carried out in the usual manner by using the bounds for the successor function [3, 4]
It is rather cubemsome and is not given here,

5, Phase patternof the perturbed system, If the parturba-
tion in (1, 2) is sufficiently small (0 <] o |-+ |y|<C 1), thea the phase pattem,
as compared with the pattem of the unperturbed system (2, 1), changes in the following
way. The saddlesare displaced. The centers are displaced and tum into foc{, The
separatrices, in general, split up and cease to join singular points, Limit cycles emerge.
As 1§ — oo the remaining trajectories wind onto the foci and the limit cycles or
go off to infinity, The type of the phase pattern is completely determined by the dis-
position and the nature of the singular points, separatrices, and limit cycles, The
disposition of the limit cycles has been described in Sect. 4. When w << ~—1 the
foci are stable if y > 0 and unstable if 7 << 0. This can be established by
computing the eigenvalues in the first approximation with respect to ¢ and 7.

The stability or instability of the foci and the limit cycles for the other values of w
is determined by considering the birfarcations,
Thus, we can describe all the phase pattem types pomible for the specified
a, B, T and for sufficiently small o and y . The phase pattem for case
A2 isshownin Fig. Sa—cfor w=w,, wy <w <w, w=1w (¥ >0).
The other possible types of phase pattern were shown in Fig. 8 in [1]} Under
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a simultaneous change of signs of 9 and ¢ stability changes to instability and vice
versa,

6, Proof of Theorem 1, We assume that the phase pattern of (2, 1) is
oftype A (> p > 0). We omit the theorem's proof for the case when  the
phase pattem of (2. 1) is of type B or C, because it is a literal repetition of  the
arguments presented below in Sect, 6.2 when describing the behavior of %, (k) for
the phase pattem of type A. In the computations for the trajectories from region

Gy we drop the index m and write k, I,, I, and G (k) imtead of kp, Iy, m,:
I, m and G™ (h) (see formulas (3. 2)).

6.1, Behaviorof k() in region G,, In G, we consi-
der .

k' =R/11’, R=I"Il'—11'[’
where the prime denotes the derivative with respect to /4, Let us show that k' > 0,
From the relation H = tp — p? (@ + B sin 49) = A we have that

P=pLa="GFV)/u (6.1)
u=u(g)=a+psindp, v=yuv(p) =1 — 4k ()
on the phase trajectory. Then

P4
L= { dpde=§ (n—p)de, L= { 20dpdg=
G(h) 9- G(h)
P4+
S (ps* — p*) do
[
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where @4 are the limits of the variation of @ on the trajectory. Hence

® L -

- * dg (Ve _ { de \ Vedg
ne—anl{ g YoV e
S A 4 C AL A

We pass from the two independent integrations over the segment [g_, @,] to an
integration over a square, by introducing two variables of integration ¢, and @,
and symmetrizing the integrand with respect to them. Then

P4 Q4 — - —
R=—1 X V”_x_: ¥ v, i VV—S__ . V”;__
)\ [ Vo T Ve wive e ve | 9040

@ =u(p), vy=v (9:))

We transform the integrand (we denote it 7 ) in order to show that it is nonpositive.
We obtain

pom St w)(ugp —uypy) B —uy 0
upbugd ¥ vyvg udug® ¥ vyvg

Then R >0 and ¥ >0 for h <h<Chy, asaserted, From this same
expression for R it follows that %' (h) - +oc0 as h-»h, 4 0. Computations
show that k' (k) = (128)~ (1 + /) + 0.

6. 2. Behaviorof k(k) inregion (G,  Instead of studying
k (k) directly, in G, we consider the equation % (h) = w which we rewrite
(using (3.2)) as

I'h,w)y=wl(h)—1I,(h)=0 6.2)
25 27

Lty = et e)de, L.k =§ o*(hq)do (6.3)
' 0

where the function P (7, ¢) = py (h, ) has been defined by formula (6.1). We
examine the behavior of I (h, w) as a function of A for various w .

Lemma 1. I [’ (h, w) = O atsome point b & (0, k), then  ["(h,
w) << 0 at this point.’

This lemma is proved below.

Corollary 1. Foreach w there exists no more than one point 4 & {0, A

atwhich I’ (h, w) == 0. Ifsuch a point exists, function J has a nondegenerate

maximum at {t.
Indeed, if two such points were to exist, then by the lemma function I would have

maxima at them, Then between them a minimum point would exist, which is for-
bidden by the lemma.
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Corollary 2. If I (h, w) has a maximum, then as w changes this maxi-
mum is continuously displaced and can vanish only at the endpoints of the interval
O, h).

Let us now consider the behavior of [ at the endpoints of (0, h;). Obviously,
I (01 w) =0 for any w and 7 (hm wl) = 01 where Wy, = ]2 (hc) / Il (hc)-
Further,

2
I'hw) = \ w—20)-22d
)=\ p) =5 4P

0

It can be shown that I’ (0, w) = 2nw / v. At the saddle points (when 2 = h,
and 9 =n/8+an/2 (n=1,...,4) 0p/ 6k hassingularities, It can be
verified that I’ (h, w) —> —o00 as h—>h, — 0, if wW<Wy=2, and
I' (hyw)—> 400 as h—>h, —0, if W > W, A finite derivative I’ (k,,
w) > 0 exists when w = w, .
The graph of I (h, w) for w = (0 isshown in
Fig.4. As w grows the graphs corresponding to h 5= 0
rise upward, The corollaries to Lemma 1 and the inform-
w=uw, ation on the behavior of 7 at the endpoints of (0, &)
I enable us to describe the evolution of the graph as w
varies, Obviously, for 0 <w <w, and w=w,
4  the function I (h, w) behaves as shown in Fig, 4 by the
middle and upper curves, respectively. Hence, in part-
icular, it follows that w,; > W;. From Fig. 4 it follows
further that for 0 << w < w; Eq. (6.2) has a single
rooton (0, k) andthat I’ (h, w) <C 0 at this root,
Equation (6.2) hasnoroots on (0, h,) when w <0
and w>w .
Now for any k& (0, k) we introduce w = k (k)
= I,(h) /I, (k). Then I(h,w) =0 andby the
preceding

Fig. 4

K () = —@ly — Iy I, =—I' (hyw) /I, >0

As h—~h, —0 wehave w—w; and k' (h) = +oo. It can be directly
verified that %’ (0) = 1/t > 0. Consequently, in G, the function % (k)
behaves as was described in Theorem 1.

Proof of Lemma 1, Let [I'(h,w)=wl/ — Iy =0. Then

I" (h, W)=w1'1—'13'=1/[1,, J=I"11'—‘I!’I"

Since I," >0, we needtoprovethat J < 0 . From (6,1) and (6, 3) we get that
in region G;
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_g% A a%p 2u dp? I 2 2T
~yT WG BTy Wy

2 2% an 5%

2:‘ “
T ol R K o R R

JaZ‘t[

ng

As in Sect. 6.1, we introduce %; = % (§1), »; = v (§;) and we pass to an integration
over a square. Using the relation  71%s — uyws = 12 (u; — u,;),. we obtain

7= 2§ asﬂ A (91 93) .9

) ) ey e

4 (91, 9a) = [P (83 — ug)* — u® (V21 — u® (V00" W(uyuy)

We transform the numerator of the integrand to

A=Ay + Ay — 20, Ay = (ulw) [ — Vo)t

Aa""i‘:':"(“’“ 121 1.-:_: ::!“”1

and an analogous formula for 4y, Since (v — pj)u, = (18 — p,)u,,

Further, we have

(Vo Ptow (Y op 4o,

A=— = =
T+ Vo, T+ Vr

Hence it follows that J < 0, as was required.
6.3, Behavior of k(h) inregion Gy .Similarly to Sect.6,2,
in G, we consider the equation

ITh,wy=wl, (k) —I, () =0 (6. 5)

for —oo<<h<h,.
Lemma 2. f I’ (h,w) =0 atsome point h & (—o0, h,), then I” (A,
w) << 0 at this point,
This lemma is proved below. As in Sect, 6,2, from it,it follows that for each w
we can find no more than one point on interval (—oo, k) at which I’ (b, w) = 0;
if such a point is found, then I (h, w) has a nondegenerate maximum at it and a3 w
varies this maximum {s displaced and can vanish only at point h..
Let us consider the behavior of I (h, w) at the endpoints of interval (%o, hy) .
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Obviously, I (h, w)—> —oc0 as h— —oc and [ (h, w) = 0, where w, =
I, () ] Iy (h,). Similarly to Sect, 6.2 it can be shown that when w = w,
= 2p, the direction of the vertical tangent at point A is changed: I’ (h, w)—
+oo a8 A—+h, —0, if w<<w, and I'(h,w)—> —c0 as h—>h,
— 0,if w> w, . A finite derivative I’ (h,, w) > 0 exists when w, = w,.
The character of the evolution of the roots of Eq, (6. 5) as w varies is determined
by the relation between w; and W If Wy <w,, then as w varies the graph
of I (h, w) changes as shown in Fig, 5 (the middle curve corresponds to W, <<
w < w,). The points of the graph are raised upward as w grows. There are no roots
when w<<w, . Forall w > w, Eq. (6.5)hasa single root on (—o0, A}
andatit I'(h, w) > 0.

1
57

Fig.5 Fig. 6

If w, > w, , then as w varies the graph of [ (h, w) changes as shown in
Fig.6. For w clmseto w,, w > w, , the function 7 (h, w) has a single nondeg-
enerate maximum and (6. 5) has no roots, As w increases the points of the graph are
raised upward, A double root at point & = hy appears forsome W = Wy, W, <<
Wy < Wy. For wy < w < w, there are two roots on (~—o0, k), lying on differ-
ent sides of point h,; to the left of them I’ (h, w) >> 0 and to the right, I’ (h,

w)<<0. When w = w, the rooton the right falls into point h;; for w >
w, asingle root exists and I’ (h, w) > 0 atit. If wy = w,, thenfor w >
w; asingle root exists and I’ (h, w) > 0 atit,
Now for any h & (—oo, Ah,) we introduce w = % (). Similarly to Sect.
6.2 we obtain

K (k) =—1TI®w)!I(k), kK =—(I"(h w) +
2 (WY (W) ! 1, ()

If w; <<w,, then by the preceding the quantitiy k' (k) is negative and 4’ (k)
—> 0o 8 Rk — 0. If w, > w, then i’ (h) ispositive for
h > hy, isnegative for h << hy; , and vanishes for h == h,; however, i
(hg) > 0; k' (h) > +o00 a8 h—»h, — 0. I W, == Wy, then the quantity
k' (k) is negative and tends to a finite negative limitas h—k, — 0, Inall
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cases, k (h)—> +oo0 as h—> —co, Thus, for w;, <<w,, w; > w,
and w, = w, the function % (h) behaves as described in parts A1, A2 and
A* | respectively, of Theorem 1.

Lemma 3, Thecases w;, <<w,, w, >w, and w; = w, are realized
if, respectively, a«/P>E,, a/p<f ad a/p=E¢,, where the
quantity &, has been introduced in Sect, 3.

Thus, the assertions of Theorem 1 conceming the behavior of % (h) in region

Gy are valid. Lemma 3 is proved below.

Proof of Lemma 2, Since I’ <0, by analogy with Lemma 1 we need
to prove that J >0, The expression for p in region @, differs from the expre. -
ssion for p in region G, (see(6.1)) by the sign before the radical; therefore, the
expression for J is obtained from (6, 4)) by changing the signs before the radicals,
Obviously, J >0, as required,

Proof of Lemma 3, Using the definition of w, and w,, we rewrite the
relation w, = w, in the form

20003 (he) — I3 (k) = 0 (8.6)

Here the functions I, , () are determined by forrnulas (6. 3) into which we need to
substitute o == pg (he, ). From (6, 1) it follows that

P12 (hey @) = P2 (@) = Pe (4 =7 | sin (29 — a/4) | )2, n = VIPa+p) (6.7

Then (6. 6) can be rewritten as

(6.8)

21
. 2
§(1~nsin¢ - (1—-:;2&@):)‘”’""

The integral in (6, 8) is taken with the aid of the substitution tg (¥/2) = s and (6.8)
is reduced to

1 — 2np ]/1—41 . (6.9
—dvVi-m [artg I/ 55+ aros 7 =]~ rr=m =

We introduce @& == 2arcsinn, ® = (0, n).  Then (6.9) is rewritten g — 4 = n.
If 9, is a root of this equation and 1 = sin (§,/2), then

a/f = (2 — ni)in® = (3 + cosd,)/(1 — cosd,) = §¢

Consequently, w; = wy when a/f =§, . Itcanbe verified that wy <wy and
wy, >wy when o/f >5, and a/p < E, . respectively, as was aserted,
6.4, Relative disposition of the characteristic
points on the graphs, To compiete the proof of Theorem 1 we need to
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show that &, (k) << ki (he) << ks (B.), and additionally in case A2 that
ky (he) < kg (hg).  From formmlas (6, 7) it follows that the inequality B, ()

< Pe < Pa (B) is fulfilled forall %= /8 +nn/2and P /8 4
nn/2(n=1,... 4) . Further,

Iv (hc) m..
b () = 2275 Ll = ( Budde (m=1,2; 1=1,2)
[

Then

2
k,w—-k:(hc)=[§ §m<wm¢>mw>——mwmaz X
(11,1 (he) Iy, 4 (R >0

The other inequalities are proved similarly,

The author thanls V, L Amol'd for suggesting the topic, for attention to the work
and for remarks.
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